HW9, Math 531, Spring 2014

Ayman Badawi

QUESTION 1. Let R be a commutative ring with $1 \neq 0$, I be a proper ideal of R, and S a multiplicatively closed set of R such that $S \cap I = \emptyset$ and $1 \in S$. Clearly S + I is a multiplicatively closed set of R/I.

- (i) Prove that $(R/I)_{S+I}$ is ring-isomorphic to R_S/I_S . [Hint: Define $f: (R/I)_{S+I} \to R_S/I_S$ such that $f(\frac{a+I}{s+I}) = a/s + I_S$, f is well-defined, so you don't need to check that. Now show that f is a ring-isomorphism.]
- (ii) Suppose that I is a prime ideal of R. Prove that I_S is a prime ideal of R. [Hint: It is clear that a Localizing of an integral domain at a multiplicatively closed set is s an integral domain, then see (i).].
- (iii) Suppose that F is a prime ideal of R_S . Prove that $F = Q_S$ for some prime ideal Q of R. [Hint : Let $Q = \{a \in R | a/s \in F \text{ for some } s \in S\}$, note that if $a/s \in F$, then $s(a/s) = a \in F$ and thus if $a/s \in F$, then $a/d \in F$ for every $d \in S$.]
- (iv) Suppose that I is a maximal ideal of R. Prove that I_S is a maximal ideal of R_S [Hint: see (i)].
- (v) Suppose that M is a maximal ideal of R_S . Prove that M need not be equal to Q_S for some maximal ideal Q of R. [Hint: Let R = Z[X], I = XZ[X], we know that I is a prime ideal of R that is not maximal. Let $S = R \setminus I$. Then I_S is a maximal ideal of R_S bla bla bla]
- **QUESTION 2.** (i) Let R be a commutative ring with $1 \neq 0$ such that M_1, M_2 are the only maximal ideal of R and $M_1M_2 = \{0\}$. By a previous HW question, we know $M_1 = eR$ and $M_2 = fR$ for some idempotent elements $e, f \in R$. Let $S = \{1, e\}$. Then clearly that S is a multiplicatively closed set of R. Prove that R_S is a field.
- (ii) Find an example of a ring R that satisfies the properties in (i), but R_S is ring-isomorphic to Z_2 .

QUESTION 3. (i) Prove that every prime ideal of a PID is maximal.

- (ii) Let F be a field such that char(F) = p a prime integer. Let $a, c \in F^*$. Prove that $f(x) = x^p ax c \in F[X]$ has no multiple roots.
- (iii) Let F be a field. Prove that F[X] is a PID. Let M be a maximal ideal (prime ideal) of F[X]. Prove that M = k(x)F[X] for some irreducible (prime) element $k(x) \in F[X]$. [Hint: recall define $L : F[X] \to N$ such that L(f(x)) = deg(f), then F[X] under L is a Euclidean domain....]

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com